
Fractal Voyager: A Web Application for Exploring and Studying
Complex Dynamics

Dakota Bryan

Complex Dynamics

I Complex Dynamics is a field of mathematics which
studies the behavior of iterated functions in the
complex plane

I The complex plane is the set of all numbers that
have a real part and an imaginary part, so they can
include the imaginary unit i, which is

√
−1

I Complex numbers are graphed with their real part
on the horizontal axis, and their imaginary part of the
vertical axis

The Parameter Plane

z 7→ z2 + c
I The parameter plane is the complex plane when a

function is iterated until a condition is met with
respect to a fixed point, in this case z, which is starts
at 0 + 0i

I It includes the parameter, c, which changes with
respect to the passed in point across the complex
plane

Parameter plane from
−2 ≤ < ≤ 1, −1.2 ≤ = ≤ 1.2 for
above function until z escapes to
infinity. c is set the the complex
number equivalent to each pixel

The Dynamical Plane and Orbits

z 7→ z2 − 0.79 + 0.15i
I The dynamical plane is the complex plane when a

function is iterated until a condition is met with
respect to a variable point, z, that changes with
respect to the passed in point across the complex
plane

I A complex number’s orbit for a particular dynamical
system is the value of the number after each
iteration of the function.

Dynamical plane from −2 ≤ < ≤ 1, −1 ≤ = ≤ 1 for above function
until z escapes when z is set to numbers across the complex plane.

Orbit for 1.14− 0.14i

Application User Interface

Custom Language Compilation

Fractal Voyager uses a complex dynamics scripting language with a grammar defined with ANTLR. The script gets
passed to ANTLR which creates a parse tree which is traversed to generate c++ code that gets compiled to Web
Assembly in the browser. This code is ran on the complex number representation of each pixel to determine the

coloring of that pixel.

HTML Canvas & Fractal Drawing

I The HTML canvas is an HTML element that can display
image data and draw lines and boxes on the web

I To draw the fractal images, an array of image data is
created and passed to a canvas element which
consists of four elements for each pixel on the
canvas, one for the red color intensity, one for blue,
green, and one for transparency

I The color of a pixel is black if the condition is never
met, or along a user-defined color gradient based
on how quickly the condition is met

Web Assembly

I Web Assembly is binary code which can be
executed on the web to make computationally
intensive tasks much faster than the default
language of the web, JavaScript

I This application uses Web Assembly, or WASM, in two
distinct places

1. The custom compiler which turns scripts into c++
code is compiled to WASM with emscripten (a
compiler toolchain), and called from JavaScript

2. The c++ code generated is compiled to WASM
with a tool called emception (a verson of
emscripten that is compiled with WASM), allowing
this on-the-fly c++ code to be compiled and
executable on the web

React
I React is a JavaScript library that this application is

built with
I It allows applications to be built with reusable

components, for example, the color gradient in the
lower right of the app is a component which is
passed the base color and how many colors to
create, then that component renders this shown
color box based on JavaScript code

I The state of components is stored with React, for
example, the wasm c++ code to generate the
fractal image data takes many parameters that are
based on the options shown on screen. When one of
the options changes based on user input, that
triggers a state change, which allows for the update
button to be clicked, which changes state variables
that get passed to the c++ code to generate a new
fractal.

Acknowledgements

Thank you to my faculty advisor Kevin Angstadt for the tremendous
amount of work and help throughout the process of making this
application. Thank you to Dan Look for the inspiration for this project
and answering countless questions about complex dynamics.


